

STFC Central Laser Facility

Capabilities relevant to Air Quality

Andy Ward

SAQN Launch Meeting, York, 14th January 2020

CLF Facilities and Functions

GEMINI

VULCAN

High power, ultra-short pulse dual beams of 15 J, 30 fs pulses

Pulse every 20s

Ultra high-power laser

Up to 1 PW peak power

Focused intensity > 10²¹ Wcm⁻²

High-power, ultra-intense lasers for extreme conditions science & applications

ARTEMIS

fs and as
ultrafast
spectroscopy
IR to soft x-ray

ULTRA

Ultrafast vibrational spectroscopy **OCTOPUS**

Imaging, laser tweezers and microscopy

Research Complex at Harwell

Laser applications in the physical and life sciences (materials, chemistry, biology)

Application to Air Quality

Flash Radiography

X-ray imaging of engine components

- Imaging through high density materials
- X-rays generated from short (fs) high intensity laser pulses on foil targets
- Aluminium blades @ 42,000 rpm
- With 100 micron resolution

Laser trapping of aerosol

Side on views of trapping

Water droplets from a nebulised mist

Optical Trap

Laser optically filtered

50 µm

Aerosol trapping

- Typically single droplet studies
- Droplets can be held for many hours.
- Multiple particles can be manipulated to study collision behaviour
- Analyse aerosol with a range of imaging and spectroscopy techniques

Aerosol composition

- Liquid: aqueous droplets, organic and hydrocarbon droplets, monomers.
- Solid: polymers, silica, titania, alumina, pharmaceutical aerosol.
- Solid cores with liquid shells
- Size range: 0.1 to 15 microns (typically 1 micron)

Cloud chemistry, mineral dust, pollution, organics

Experimental conditions

- Aerosol delivery: nebulisation, atomisation, pMDI
- Laser wavelength: 514.5, 532, 785, 1064 nm
- Laser powers: between 1 and 25 mW
- Controlled environments: surrounding gasses, etc

Chemical, physical and optical properties of aerosol particles

Micro-Raman Spectroscopy

- Levitate an airborne droplet consisting of oleic acid and water
- Droplet is exposed to a dilute flow of humidified ozone in oxygen
- Acquire and analyse spectra

Technology Facilities Council Reactants and products followed during the oxidation of oleic acid by ozone.

oleic acid

Micro-Raman Spectroscopy

- Growth of the droplet size was observed as the droplet became more hydrophilic
- The oleic acid on the droplet was oxidised and the decay of reactants and the growth of chemical products was followed with Raman spectroscopy.

Respiratory Therapy Studies

Optical levitation of particles in air from a medical inhaler. Allowing chemical changes to be monitored whilst simulating the respiratory environment of a lung

Mie Scattering Spectroscopy

- The droplets act as cavities or whispering gallery modes (WGMs)
- At specific wavelengths light can circulate for timescales of nanoseconds, giving rise to metres of pathlength in a droplet that may be only a few microns in diameter.
- Use spontaneous Raman or broadband white light
- Optical properties: Droplet size, refractive index

Jonathan Reid, Bristol University

Martin King, Royal Holloway

Sampling atmospheric aerosol

 Re-aerosolise samples collected on filters from different environments

Halley Clean Air Sector Laboratory operated by the British Antarctic Survey

Direct measurement of aerosol viscosity and phase using Fluorescent Lifetime Imaging (FLIM)

Viscosity measurements can be achieved using fluorescence detection from small fluorophores ("molecular rotors").

Correlative studies with electron microscopy

- Capture two droplets in air monomer
- Initiate reaction
- Manipulate laser positions to collide
- Lower particle to substrate known coordinate
- Image on electron microscope

Small Angle X-ray scattering of aerosol

Nick Terrill, Christian Pfrang, Adam Squires

Diamond Light Source (Beamline I22)

Follow the self-assembly processes of surface active

materials

SUPPLIMENTARY SLIDES

Kerr gated Raman technique

Kerr gated Raman is driven by **ps** laser Performance is sensitive to the gate spot quality

Core-Shell Particles

Coating with a vapour, using silica beads and oleic acid

Oleic acid: size (1.055 µm) and refractive index dispersion

$$n = 1.4554 + \frac{4565}{\lambda^2} + \frac{1 \times 10^8}{\lambda^4}$$

Silica: core size (0.956 µm) and refractive index dispersion

$$n = 1.3548 + \frac{3720}{\lambda^2} + \frac{1 \times 10^8}{\lambda^4}$$

Core-Shell Particles

Coating with a vapour, using silica beads and oleic acid

FLIM viscosity calibration using aqueous sucrose droplets

